Trending

Answers

  • 0
  • 0

What is BAM AlMgB14 Powder?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



The secretary general of the Organization of Petroleum Exporting Countries (OPEC) said recently that US economic sanctions against Venezuela have affected global energy supplies. 

He told Venezuelan media that the ECONOMIC sanctions imposed by the United States on Venezuela and other countries have seriously affected the ability to produce and export oil worldwide and violated the right of people in other countries to use energy.

Venezuela has one of the largest proven crude oil reserves in the world, but U.S. sanctions have made it impossible for Venezuela’s oil industry to consistently export reliable energy to the world, he said. Despite this, he highly appreciated the efforts of the Venezuelan oil industry to maintain BAM powder are expected to increase in the future.

Introduction to BAM AlMgB14 Powder
Magnesium aluminum boride or Al3Mg3B56, commonly known as BAM, is a compound of aluminum, magnesium, and boron. Its nominal molecular formula is AlMgB14, and its chemical composition is closer to Al0.75Mg0.75B14.
It is a ceramic alloy with very high wear resistance and very low sliding friction coefficient, achieving a record value of 0.04 in the unlubricated state and 0.02 in the lubricated AlMGB14-TiB2 composite.
First reported in 1970, BAM has an orthogonal structure with four icosahedral B12 units per cell. The coefficient of thermal expansion of this super-hard material is comparable to that of other widely used materials such as steel and concrete.
 

Physicochemical Properties of BAM AlMgB14 Powder
Structure
Most super-hard materials have simple, highly symmetrical crystal structures, such as diamond cubes or sphalerite. BAM, however, has a complex, low-symmetry crystal structure, with 64 atoms per cell. The crystal cell is orthogonal and its most prominent feature is four boron-containing icosahedrons. Each icosahedron contains 12 boron atoms.  The other eight boron atoms connect the icosahedron to the other elements in the cell.  The occupancy of metal sites in the lattice is less than 1, so while the material is usually identified by the molecular formula AlMgB14, its chemical composition is closer to Al 0.75 Mg 0.75 B14. Such non-stoichiometry is common for borides (see boride and boron carbide crystal structures for boron-rich metals). The cell parameters of BAM are a = 1.0313 nm, B = 0.8115 nm, C = 0.5848 nm, Z = 4 (four structural units per cell), space group Imma, Pearson symbol oI68, and density 2.59 g/cm 3. The melting point is roughly estimated at 2000 °C.
 
Photoelectric
BAM has a bandgap of about 1.5 eV. Resistivity depends on sample purity and is about 10^4Ohm·cm. The Seebeck coefficient is relatively high, between -5.4 and -8.0 mV/K. This property results from the transfer of electrons from metal atoms to the boron icosahedron, which is beneficial for thermoelectric applications. 
 
Hardness and fracture toughness 
The microhardness of BAM powders is 32-35GPa. It can be increased to 45GPa by nitrization with boron-rich titanium alloy, and the fracture toughness can be improved by TiB2 or by deposition of quasi-amorphous BAM films. Adding AlN or TiC to BAM its hardness will decrease. Hardness values above 40GPa make BAM super hard by definition. In BAM-TiB2 composites, the maximum hardness and toughness are achieved at about 60 vol.% TiB2. By increasing TiB 2 content to 70-80%, the wear rate was improved at the expense of about 10% hardness loss. The titanium B2 additive itself is a wear-resistant material with a hardness of 28-35gpa.
 
Thermal expansion 
The thermal expansion coefficient (TEC, also known as thermal expansion coefficient, COTE) of AlMgB14 was measured as 9 × (10^-6) (K^-1) by expansion measurements and high-temperature X-ray diffraction using synchrotron radiation. This value is fairly close to the COTE of widely used materials such as steel, titanium, and concrete. Based on the reported AlMgB14 hardness value and the material used as the wear-resistant coating itself, the COTE of AlMgB14 can be used to determine the coating application method and the performance of the parts after use.
 
Friction
The composite of BAM and TiB2 (70 % of TiB2 by volume) has one of the lowest friction coefficient values, ranging from 0.04-0.05 in the dry scraping of diamond tips and reduced to 0.02 in water glycol-based lubricants.
 

BAM AlMgB14 Powder Properties
Other Names Magnesium aluminum boride, Al3Mg3B56, BAM, AlMgB14
Molecular Weight 202.64
Appearance gray to black powder

 

Aluminum Magnesium Boride BAM AlMgB14 Powder


BAM AlMgB14 Powder Application
BAM is commercially available and is studying potential applications. 
For example, pistons, seals, and blades on pumps can be coated with BAM or BAM + TiB2 to reduce friction between parts and increase wear resistance. Reducing friction will reduce energy use. BAM can also be coated on cutting tools. The reduced friction will reduce the force required to cut objects, extend tool life, and possibly increase cutting speed.  Coatings only 2-3 microns thick have been found to improve cutting tool efficiency and reduce wear.
 

BAM AlMgB14 Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest BAM AlMgB14 powder price, you can send us your inquiry for a quote. ([email protected])
 

BAM AlMgB14 Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality BAM AlMgB14 Powder, please feel free to contact us and send an inquiry. ([email protected])

 

Nissan recently unveiled a prototype BAM powder, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high thermal conductivity, and radiation absorption. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished Tungst…

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, military and aerospace. High Density Tungsten Alloy Metal Ball, 18g/cm3 Diameter: 1.0mm-150.0mm Surface: sinter…