University Overseas Has New Development That Boron Nitride Coating Extends Battery Life And Ensures Battery Safety
If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net
The powder boron is available in four variants. These are hexagonal boron, rhombohedral (RBN), cube boron and wurtzite. The most common boron nitride produced is white graphite, which has a structure similar to graphite. The need to increase battery capacity, improve battery life, and ensure safe battery operations is a growing concern, especially as more people rely on mobile devices and electric cars that use such energy. The Overseas University Engineering team, led by Yuan Yang assistant professor of Materials Science and Engineering, announced on April 22, 2019 that a new technique has been developed for safely extending battery life. This involves implanting a nano-coating made from boron (BN) to stabilize the electrolyte solid in a lithium metal cell.
Presently, the conventional lithium-ion batteries used in everyday life are very common. The batteries' low energy density can lead to a shorter life expectancy and even short circuits. This is due to the highly-flammable liquid electrolyte that fills the battery. It is possible to increase the energy density by using lithium metal as anode, instead of graphite. Lithium metal has a theoretical charge capacity that is nearly 10 times greater than that of graphite. Dendrites form easily during the process of plating lithium. A short circuit can occur if the dendrites reach the separator, located in the middle, of the battery.
Yang explained: "We chose to concentrate on solid ceramic electrolytes. Solid ceramics electrolytes are a great alternative to the flammable liquid electrolytes found in lithium-ion batteries. They offer greater safety and power density.
Since most solid electrolytes consist of ceramic, they are non-flammable and do not pose any safety risks. Solid ceramic electrolytes are also strong mechanically and can even inhibit the growth or dendrites of lithium, allowing the lithium metal to become the anode. The majority of solid electrolytes do not react well with lithium metal, and they are easily corroded.
To address these challenges, the research team collaborated with the Brookhaven National Lab and the City University of New York deposited a 5 to 10 nm boron nitride (BN) nanofilm as a protective layer to insulate the electrical contact between the metallic lithium and the ionic conductor (solid electrolyte), a small amount of polymer or liquid electrolyte is added to penetrate the electrode/electrolyte interface.
Researchers selected boron nitride to be the protective layer, as it has high electrical insulation and is chemically and mechanically resistant to lithium. Researchers created boron with holes that let lithium ions pass through. This makes it an ideal separator. The chemical vapor deposition method is a simple way to create a thin, continuous film of boron.
Researchers are currently expanding their methods to include a wide range of solid electrolytes, and further optimizing interfaces in the hope of producing solid-state batteries that have high performance and a long cycle life.
Tech Co., Ltd., a professional boron powder manufacturer, has over 12 years of experience in the chemical products research and design. Contact us if you need high-quality boron powder.
Send an inquiry
.
Inquiry us