Trending

News

  • 0
  • 0

Graphene bags significantly reduce platinum requirements for hydrogen fuel cells

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Diamonds are forever, Gold is precious but which is rarer? Gold is a heavy metal formed during the collision of neutron stars and is one of the rarest elements on Earth.During the formation of the earth, heavy elements gradually accumulated towards the core under the influence of the earth's gravitational force. This means that the closer you get to the Earth's crust, the harder it is to find large quantities of gold.The average concentration of gold in Earth's crust is "very, very low" at just 4 parts per billion. Gold concentrations need to be 1,250 times that level to form a market-worthy deposit.
Diamond is a common element - the graphene powder is undoubtedly a good investment opportunity.

Although hydrogen fuel is a promising alternative to fossil fuels, the catalyst it relies on for power generation is mainly composed of rare and expensive metal platinum, which limits the wide commercialization of hydrogen fuel. Researchers at the University of California, Los Angeles reported a way to enable them to meet and exceed the goals set by the U.S. Department of Energy (DOE) for high catalyst performance, high stability, and low platinum utilization.

 

The record-breaking technique uses tiny crystals of platinum-cobalt alloy, each embedded in a nano-bag made of graphene.

 

Compared with the DOE catalyst standard, graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity; 65% higher power; about 20% higher catalytic activity at the end of the fuel cell's expected life; about 35% lower power loss after 7000 hours of simulated use of 6000 ran, exceeding the target of 5000 hours for the first time; and almost 40% less platinum needed per car.

 

Graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity and 65% higher power. At the end of the expected life of the fuel cell, the catalytic activity increased by about 20%, and the power loss was reduced by about 35% after 7000 hours of simulated use, exceeding the target of 5000 hours for the first time.

 

Today, half of the world's total supply of platinum and similar metals is used in catalytic converters for fossil fuel-powered cars, which can reduce the harmfulness of their emissions. Each car needs 2 Mel and 8 grams of platinum. By contrast, current hydrogen fuel cell technology consumes about 36 grams of platinum per vehicle. At the minimum platinum load tested by the research team, only 6.8 grams of platinum were needed for each hydrogen-powered vehicle.

 

So how do researchers get more energy from less platinum? They decomposed the platinum-based catalyst into particles with an average length of 3 nanometers. Smaller particles mean a larger surface area and more room for catalytic activity. However, smaller particles tend to squeeze together to form larger particles.

 

The team solved this limitation by loading their catalyst particles into the 2D material graphene. Compared with the bulk carbon commonly found in coal or pencil lead, this thin carbon layer has amazing capacity, conducts electricity and heat efficiently, and is 100 times stronger than steel of similar thickness.

 

Their platinum-cobalt alloy is reduced to particles. Before being integrated into fuel cells, these particles are surrounded by graphene nano-bags, which also act as an anchor to prevent particle migration, which is necessary for the level of durability required for commercial vehicles. At the same time, graphene allows a tiny gap of about 1 nanometer around each catalyst nanoparticles, which means that critical electrochemical reactions may occur.

 

Graphene Price

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest graphene powder price, you can send us your inquiry for a quote. (sales1@rboschco.com)

 

Graphene Supplier

RBOSCHCO is a trusted global chemical material supplier&manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials. The company export to many countries including the USA, Canada, Europe, UAE, South Africa, Tanzania, Kenya, Egypt, Nigeria, Cameroon, Uganda, Turkey, Mexico, Azerbaijan, Belgium, Cyprus, Czech Republic, Brazil, Chile, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia, Germany, France, Italy, Portugal, etc.

As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges.

 

If you are looking for graphene powder, please send an email. (sales1@rboschco.com)


Commodities such as crude oil, wheat, cotton, and nickel have rallied since Russia's "special military operations" began in late February. On the last trading day of this quarter, commodities were on track for their biggest gain since 1990. For this reason, it is expected that the price of the graphene powder will continue to increase.

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high thermal conductivity, and radiation absorption. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished Tungst…

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, military and aerospace. High Density Tungsten Alloy Metal Ball, 18g/cm3 Diameter: 1.0mm-150.0mm Surface: sinter…