Trending

News

  • 0
  • 0

What is the difference between natural graphite and artificial graphite?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



US President recently decided to invoke a Cold War-era defense law to encourage domestic production of minerals needed to make batteries for electric cars.

This order, issued under the Defense Production Act (DPA), is expected to help miners secure government funding for feasibility studies for new projects to refine lithium, nickel, and other metals for electric vehicles, or to increase productivity at existing facilities.

The funds will not be used to dig new mines or buy minerals for government stocks, and the DPA does not allow the mining industry to evade regulatory or licensing standards. It is unclear how much money could be allocated.

Talon Metals Corp said this decision signaled the US would support responsible domestic mining, processing, and recycling of battery materials, and see it as a matter of national importance. The company has a supply agreement with Tesla to supply materials from a Minnesota nickel mine they are developing.

This move could cause volatility in the prices of metals and other commodities like the natural graphite.

Given that what is prepared from natural graphite is usually artificial graphite in the narrow sense, this paper will only analyze and discuss the differences and links between natural graphite and artificial graphite in the narrow sense.

Crystal structure

The crystal development of natural graphite is relatively complete, the graphitization degree of natural flake graphite is usually above 98%, and the graphitization degree of natural microcrystalline graphite is usually below 93%.

The degree of crystal development of artificial graphite depends on the raw material and the heat treatment temperature. Generally speaking, the higher the heat treatment temperature, the higher the degree of graphitization. At present, the degree of graphitization of artificial graphite produced in the industry is usually less than 90%.

1648774721591099.jpg

Organizational structure

Natural flake graphite is a single crystal with a relatively simple structure, with only crystallographic defects (point defects, dislocations, stacking faults, etc.), and macroscopically showing anisotropic structural characteristics. The grains of natural microcrystalline graphite are small, the grains are disorderly arranged, and there are pores after the impurities are removed, showing the isotropic structural characteristics on the macroscopic level.

Artificial graphite can be seen as a multi-phase material consisting of a graphite phase transformed by carbonaceous particles such as petroleum coke or pitch coke, a graphite phase transformed by a coal bitumen binder encapsulated around the particles, particle accumulation, or pores formed after heat treatment of coal tar binder, etc.

Physical form

Natural graphite usually exists in powder form and can be used alone, but is usually used in combination with other materials.

There are many forms of artificial graphite, including powder, fiber, and block, while artificial graphite in the narrow sense is usually blocked, which needs to be processed into a certain shape when used.

Physical and chemical properties

Natural graphite and artificial graphite have both commonalities and differences in performance. For example, both natural graphite and artificial graphite are good conductors of heat and electricity, but for graphite powders of the same purity and particle size, natural flake graphite has the best heat transfer performance and electrical conductivity, followed by natural microcrystalline graphite and artificial graphite the lowest.

Graphite has good lubricity and certain plasticity. Natural flake graphite has better crystal development, smaller friction coefficient, best lubricity, and highest plasticity, while dense crystalline graphite and cryptocrystalline graphite are second, and artificial graphite is worse.

High quality graphite manufacturer

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to the research and development, production, processing, sales and technical services of lithium ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase and other negative materials (silicon carbon materials, etc.). The products are widely used in high-end lithium ion digital, power and energy storage batteries.

If you are looking for graphite or lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com

 


China's non-manufacturing purchasing managers index for March was released by the China Federation of Logistics and Purchasing and the Service Industry Survey Center of the National Bureau of Statistics today. An index of business activity for the non-manufacturing sector as a whole fell below 50 percent in March.

In March, China's non-manufacturing business activity index was 48.4%, down 3.2 percentage points from the previous month. The new orders index was 45.7 percent, down 1.9 percentage points from the previous month, indicating a significant slowdown in the growth of supply and demand in the non-manufacturing sector from the previous month.  In terms of sectors, the business activity index and new order index of transportation, accommodation and catering, culture, sports and entertainment, and tourism-related industries all declined significantly from the previous month.

Then the natural graphite of the market may be affected by significant changes, the price will also be volatile, if you want to know the latest news of the natural graphite, welcome to contact us.

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high thermal conductivity, and radiation absorption. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished Tungst…

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, military and aerospace. High Density Tungsten Alloy Metal Ball, 18g/cm3 Diameter: 1.0mm-150.0mm Surface: sinter…